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ABSTRACT 
In this paper, we propose a methodology to improve the 
performance of the standard Differential Evolution (DE) in 
constraint optimization applications, in terms of accelerating its 
search speed, and improving the success rate. One critical 
mechanism embedded in the approach is applying Stochastic 
Ranking (SR) to rank the whole population of individuals with 
both objective value and constraint violation to be compared. The 
ranked population is then in a better shape to provide useful 
information e.g. direction to guide the search process. The 
performance of the proposed approach, which we call SRDE 
(Stochastic Ranking based Differential Evolution) is investigated 
and compared with standard DE with two variants of mutation 
strategies. The experimental results show that SRDE outperforms, 
or at least is comparable with standard DE in both variants in all 
the tested benchmark functions.   

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – Heuristic methods. 

General Terms 

Algorithms. 

Keywords 
Differential evolution, stochastic ranking, constrained 
optimization 

1. INTRODUCTION 
Since it advent [1], DE has been considered a powerful 
constrained optimization tool. It has been applied in a large 
variety of engineering optimization applications [2]. Many 
researchers have also proposed different ways to improve the 
performance of standard DE, in terms of its search speed and 
successful rate.  

Noman and Iba[7] proposed a hybrid DE which adopted an 
adaptive local search algorithm to accelerating DE. Combining 
several strategies, Qin and Suganthan[13] proposed a self-
adaptive DE(SaDE), SaDE chooses different strategies and adjusts 
the control parameters of DE according to previous search 
information. Sun et al.[14] proposed EDA that combines the 
standard DE with the estimation of distribution algorithm. EDA 
has been used to locate the most promising area to guide the 
search. Rahnamayan et al [6] proposed OBL which employs 
opposition-based learning to initialize the population and for the 
population to generate jumping in each generation to accelerate 
the convergence speed of DE. 

 

 

This paper proposes a simple, but very useful mechanism that can 
accelerate the search speed of standard DE. From empirical study, 
it is also shown that it can increase the successful rate. In this 
approach, stochastic Ranking [3] is first applied to rank the whole 
population, with both objective value and level of constraint 
violation as comparison criteria. The ranked population is then 
able to provide valuable directional information to guide the 
search of DE.  The resulting algorithm, which we call SRDE 
(Stochastic ranking based Differential Evolution) can consistently 
outperforms, or at least is comparable to standard DE in a 
comprehensive test with 24 benchmark problems [15].The 
remainder of the paper is organized as follows. Section 2 briefly 

1. Initialize 

            Generate the initial generation 0P , t= 1 ; 

2. While termination criteria not satisfied do:  

3.      Evaluate population  tP . 

4.      For each individual  
t

x in tP  

5.           Generate a trial vector 
t

v by mutation and 

crossover                

6.            If 
t

v is better than 
t

x  then  

7.                    
tt

vx ← ; 

8.            End if      
9.       End Foreach 

10.       1+tt ← ; 

11.  End while 
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               Fig. 1. Pseudo-code of standard DE 
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reviews standard DE. Section 3 explains the idea and algorithm 
flow of SRDE. Section 4 presents experimental verification. 
Finally, the work is concluded in section 5. 

2. DIFFERENTIAL EVOLUTION 

2.1 Standard DE 
As a population -based evolutionary algorithm, DE has been used 
to solve a large number of real-parameter optimization problems. 
Unlike other Evolutionary Algorithms (EAs), DE employs 
difference of individuals in generation of new individuals. In each 
iteration, a trial vector is generated by combining a parental 
individual and the difference vector(s) of several other individuals 
in the same population. If this trial vector is better than the 
parental individual, it will become a new offspring and go into the 
next generation. 

Fig. 1 shows the pseudo code of the standard DE. As can be seen, 
DE first creates an initial population distributed randomly over 
the whole search space. Then, in each generation, DE creates a 
trial vector for each individual according to a certain mutation 
strategy. A crossover operation is then executed, followed by a 
selection operation, in which DE applies a Knock-out competition 
to select the survivor from the parental individual and its 
corresponding trial vector. The winner, then, goes into the new 
generation. This scheme implicitly implements 'elite reserve' 
model, which typically is very important for optimization. 

Many variants of standard DE have been proposed, including the 
following five different mutation strategies: 
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where the indexes 1r , 2r , 3r , 4r  and 5r  represent five different 

integers generated within range [ ]Np,1  at random, which should 

also not be equal to i . 
T

bestx
r

 denotes the ‘best’ individual at 

generation T .  

 

2.2 Different Rules of Handling Constraints 
Very few constraint handling techniques have been reported in 

differential evolution for constrained optimization applications. 

Two very important and similar techniques are proposed by 

Lampinen [16] and Becerra and Coello [17]. Both techniques use 

three rules for the replacement during the selection procedure, and 

first two are the same. They are: 

• A feasible individual is always better than an infeasible 

individual. 

• If both individuals are feasible, the one with better 

value of the objective function is selected for the next 

generation. 

The third rule, regarding the situation when both individuals 

are infeasible, is different. In Lampinen’s approach, the 

comparison is made in the Pareto sense in the constraint violation 

space. It can be expressed as: 

• If both individuals are infeasible, the parent is replaced 

if the new individual has lower or equal violation for 

all the constraints. 

In Becerra and Coello’s approach, a sum of normalized 

constraint violation is used for comparison, and can be written as: 

•    If both individuals are infeasible, the individual with 

less level of constraint violations is better. The level of 

constraint violation is measured with normalized 

constraints with the expression of 

∑
=

=
constr

c c

c
j

g

xg
xviol

1 max

)(
)( , where )(xgc are the 

violated constraints of the problem, and cgmax the 

largest violation of the constraint )(xgc found so far. 

It is worthwhile to point out that both approaches bear some 

resemblance with an approach proposed by Deb [18] previously, 

even though Deb’s approach is not based in differential evolution. 

The key difference also lies in the comparison for the case of two 

infeasible individuals: Lampinen’s method makes the comparison 

in the Pareto sense, Deb’ method sums all the constraint 

violations and compares a single value, Becerra and Coello’s 

method makes normalization for the constraints violations before 

summing them together.  

3. SRDE: STOCHASTIC RANKING BASED 

DIFFERENTIAL EVOLUTION  

3.1SRDE/rand/1 
The ‘rand/1’ mutation strategy used in standard DE provides 

no information of direction towards the global optimum. If the 

information of direction can be obtained and utilized in the search 

process, the performance of the algorithm has a potential to be 

improved. To avoid the search to be stuck in local minimum, 

however, the direction information should not be local, but global. 

To define a ‘global direction’ information for the whole 

population is not an easy task, especially when each individual 

has actually two features to compare with others in a constraint 

optimization problem – one feature is objective value, the other is 

level of constraint violation. How to optimally balance them in the 

comparison procedure presents a challenge. 

Stochastic Ranking (SR) [3] provides a convenient and 

powerful mechanism to balance the dominance in ranking the 

whole population with both objective value and constraint 

violation as comparison criteria. The pseudo code of SR is 

provided in Fig. 3.  

The improved DE algorithm, SRDE is designed with a focus on 
a modified mutation strategy, which can be described in more 
details as the following: for generation of trial vectors, the whole 
population is first made to undergo a stochastic ranking 
procedure. Then the ranked population is divided into two parts –  
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1. Initialize: 

2.            Parameters: PN , F , fp , CRp , γ ;where PN  denotes the size of  population;  F denotes scaling factor; fp  is a parameter 

used in stochastic ranking. CRp  denotes the probability of crossover, γrepresents the number of individuals in the upper part of the 

population 1Q . 

3.            Generate the initial generation 0P , 0=t ; 

4.  While termination criteria not satisfied do:  

5.            Evaluate population tP : ( ) )(, tPevalf =ϕ ;  where ϕ,f  denote objective and violation of  constraints, respectively. 

6.            Rank population using stochastic ranking: ),,(_ fpfrankstochasticI ϕ= ;  

7.            Divide population into two sets: 

8.                   { }t

I

t

I

t

I

t
xxxQ )()2()1(1 ... γ=  ; 

9.                  { }t

I

t

I

t

I

t
xxxQ )()2()1(2 ... λγγ ++= ; 

10.            For 1=k  to PN  do  

11.                     Select tr P
t

x ∈
1

,
t

r Q
t

x 12
∈ , 

t

r Q
t

x 23∈  at random;    

12.                    




 −×← t

x
t

xF+
t

xu rrr

t

k 321
; 

13.                     ( )CR

t

k

t

k

t

k P,x,ucrossoverv ← ; 

14.                      If 
t

kv is better than kx  then  
t

k

t

k vx ← ; 

15.                      End if  

16.            End for  

17.            1+tt ← ; 

18.   End while 

1. Initialize: 

2.            Parameters: PN , F , fp , CRp ;where PN  denotes the size of  population;  F denotes the scaling factor; fp  is a parameter 

used in stochastic ranking. CRp  denotes the probability of crossover. 

3.            Generate the initial generation 0P , 0=t ; 

4.  While termination criteria not satisfied do:  

5.            Evaluate population tP : ( ) )(, tPevalf =ϕ ;  where ϕ,f  denote objective and violation of  constraints, respectively. 

6.            Rank population using stochastic ranking: ),,(_ fpfrankstochasticI ϕ= ;  

7.            For 1=k  to PN  do  

8.                     Select 
t

)I(r x=
t

x 11
 /*the ‘best’ individual in current population in Stochastic Ranking sense.*/ 

9.                     Select 
t

xr2
, 

t
xr3

 tP∈  at random; 

10.                    




 −×← t

x
t

xF+
t

xu rrr

t

k 321
; 

11.                     ( )CR

t

k

t

k

t

k P,x,ucrossoverv ← ; 

12.                      If 
t

kv is better than kx  then  
t

k

t

k vx ← ; 

13.                      End if  

14.            End for  

15.            1+tt ← ; 

16.   End while 

                                   Fig. 2.  Pseudo-code of iterative search procedure of  SRDE/best/1/bin 
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upper part and lower part. The upper part comprises of the ‘better’ 
individuals who have been ranked high after stochastic ranking 
procedure. For each individual trial vector, the base individual is 
selected randomly from the whole population, and the second, 
third individuals are selected from the upper part and lower part, 
respectively. The three individuals then make a mutation 
operation according to ‘rand/1’ strategy, with the difference 
vector obtained through extracting one ‘good’ individual with the 
‘less-good’ individual. It is notable that in this way the difference 
vector will always be directed towards the upper part of the 
population, thus leading the population to search upwards (Fig. 
4). This procedure is repeated until the whole population of trail 
vectors is obtained. The rest of the algorithm is the same as 
standard DE/rand/1. The overall procedure of the SRDE/rand/1 
algorithm can be illustrated using the pseudo-code listed in Fig. 2.  

1. j
I = j , { }λ,j 1,...∈∀  

2. for i = 1 to N  do 

3.      for j = 1 to λ − 1  do 

4.             sample ( )0,1Uµ∈  

5.             if ( ) ( ) 01 =Iφ=Iφ
+jj  or ( )

f
P<µ  then 

6.                  if ( ) ( )1+jj
If>If  then 

7.                      swap( 1j+j
I,I ); 

8.                  end if 

9.                  else  

10.                       if ( ) ( )1j+j
Iφ>Iφ   then 

11.                           swap( 1j+j
I,I ); 

12.                       end if 

13.                  end if 

14.             end if 

15.      end for 

16.      if no swap done break  

17. end for 

                   Fig. 3. Pseudo-code of stochastic ranking [3] 

3.2 SRDE/best/1 

The mechanism of SR can be embedded not only to rand/1 
mutation strategy, but also to other mutation strategies. The 
resultant variation of SRDE can also achieve performance 
improvement. In this section, we investigate the embedment of SR 
to best/1 mutation strategy, thus the SRDE/best/1.  

The pseudo code of SRDE/best/1 is show in Fig. 2. In this 
variation of SRDE, the base individual is always selected as the 
uppermost individual of the population after SR, therefore the 
‘best’ individual of the population in the SR sense.  

4. EXPERIMENT 
In this section, two sets of experiments were conducted to 
compare the performances of DE and SRDE with two different 
mutation strategies, in the well-known 24 benchmark test 
problems [15]. The codes were implemented in MATLAB and run 
on an Intel Core2 laptop with 4G RAM under WINDOWS-XP 
platform. For each test problem, 50 independent runs were 
conducted.   

 
Fig. 4. Illustration of the modified mutation strategy in 

SRDE/rand/1. Note that the population ranked by SR is 

divided into upper part Q1 and lower part Q2. Difference of 

one randomly selected individual r2 from Q1 and one 

randomly selected individual r3 from Q2 form a differential 

vector pointing towards r2.  

4.1Configuration and Parameters Setting 
For all test problems, we set the same values for the parameters 
used both for standard DE and SRDE, and they are listed as 
following: 

Population size: 100 [4][6] 

Maximum number of generation: 10000 

Differential factor: F  = 0.7 [ 9] 

Differential crossover probability: CRp = 0.8  

Value to reach, VTR = 10-4 [13 ] 

The additional parameter for Stochastic Ranking: f
p  =  0.45 [3] 

The additional parameters for SRDE/rand/1 are: γ  = 0.3 

In this paper, the standard binary crossover operator was adopted 
for all algorithms.  

4.2 Comparison of DE and SRDE with 

rand/1/bin mutation 
The purpose of the conducted experiments in this subsection is to 
compare the performance of standard DE and SRDE with 
rand/1/bin strategy. In this experiment, median number of solution 
candidates (NSC) and successful rate (SuR) of 50 runs have been 
used as performance measures. For convenience of comparison, 
we further defined two metrics: 

                           
DESRDEdiff SuRSuRSuR −=  

r1 r2 

r3 

( )321 rrFr −×+  

Q2 

Q1 
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SRDE

DE
ratio NSC

NSC
NSC =  

The second metric is the same as Acceleration Rate (AR) defined 
in [6], which provides a very convenient way to compare search 
speed. From the results listed in Table 1, it can be seen DE failed 
in problems g03,g13,g20,g22,g23, and had a very low successful 
rate in problems g17(20%) . For these problems, SRDE had 
significant improvements, i.e. for g13, SuR is improved from 0% 
to 44%,  

 

 

 

 

 

 

for g17, from 20% to 82%,  for g23, from 0% to 92%. In all other 
test problems, the SuRs of DE and SRDE are comparable, except 
for g21 there is a slightly reduction from 76% to 64%. Fig. 5 and 
Fig. 6 show the SuRs and NSCratio of DE and SRDE in all 
benchmark functions respectively. The horizontal axis of Fig. 5 
and Fig. 6 represents the new index of test problems according to 
the difficulty level of problems in an ascending order [19]. Table 
1 also shows that SRDE outperforms DE in terms of search speed. 
SRDE had less NSCs than those of DE in all test functions in 
which they can both succeed to achieve the optimal. For those test 
functions that either SRDE or DE cannot find optimal, no 
information of NSCs will be used for comparison.  Fig. 6 also 
demonstrates this in a graphical way, in which the vertical axis is 
the NSCratio As we explained before, NSCratio provides a very good 
metric to compare the search speed. From the average of NSCratio 
value of all test problems, it can be concluded that the average 
improvement of convergence speed was 134.4%. Fig. 9 show the 

comparison of convergence speed of SRDE/rand/1/bin and 
DE/rand/1/bin in test function 1, 2, 15, 18. 

4.3 Comparison of DE and SRDE with 

best/1/bin mutation strategy 
In this subsection, comparison study of DE and SRDE with 
respect to best/1/bin strategy has been carried out. The results are 
showed in Table 2. It can be seen from Table 2 that SRDE 
improved the successful rate in problem g13, g17, g21 
considerably while in the rest problems the results are 
comparable. In terms of the convergence speed, it can be seen that 
SRDE could obtain the optimal with much less NSCs than DE in 
problems g05, g11, g13, g14, g15, g17, g23, although in some 
problems SRDE needed slightly more NSCs. It is noted that to 
avoid one value to dominate others in calculating the average 
improvement of convergence speed, we discount the NSCratio of 
g13, which is 14.96 and significantly bigger than others.  The 
average improvement of convergence speed is therefore 82.15%. 

Fig. 7 and Fig. 8 also show the improvement of success rate and 
convergence speed of SRDE over DE with best/1/bin strategy. It 
is notable that the horizontal axis of Fig. 7 and Fig. 8 also 
represents the new index of test problems according to the 
difficulty level of problems in an ascending order as in Fig. 5 and 
Fig. 6. Fig. 10 show the comparison of convergence speed of 
SRDE/best/1/bin and DE/best/1/bin in test function 5, 11, 13, 15.  

 

 
 
 

 
 
 

5. CONCLUSION 
In this paper, we propose a new scheme of DE, SRDE to improve 
the performance of the standard DE in constraint optimization 
applications. One critical mechanism embedded in SRDE is 

                    Fig. 6. NSCratio vs. Problems. 

 
Fig. 7. SuR vs. Problems 

. 

                            Fig. 8. NSCratio vs. Problems 

. 

                       Fig. 5. SuR  vs. Problems 

. 
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applying SR to rank the whole population of individuals with both 
objective value and constraint violation to be compared, before 
evolutionary operations are used. The ranked population is then 
able to provide useful information e.g. direction in the mutation 
operation to guide the search process. Li [5] also takes advantage 
of directional information within DE framework for multi-
objective optimization. However, the way of extracting directional 
information is quite different from ours. The comprehensive 
experimental results show that SRDE outperforms, or at least is 
comparable with standard DE using both rand/1/bin and 
best/1/bin mutation strategies in all 24 tested benchmark 
functions, in terms of both convergence speed and success rate. 
The convergence speed, however, is improved much more 
significantly. For the rand/1/bin mutation strategy, the 
improvement ratio is 134.4%, for best/1/bin strategy, the ratio is 
82.15%. It has also been shown in another application work [20] 
that a slight variation of SRDE can achieve much better 
optimization solution than standard DE and some other state-of-
the-art EAs in a MEMS design optimization problem.  
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TABLE 1  

COMPARISON OF DE AND SRDE WITH RAND/1/BIN STRATEGY 

               DE(rand/1/bin)                                   SRDE(rand/1/bin) 

diff
SuR  

ratioNSC  

Prob. 
Median of 

NSC(x100) 

Feasible 

Rate(FR) 

Success 

Rate(SuR) 
Prob. 

Median of  

NSC(x100) 

Feasible 

Rate(FR) 

Success 

Rate(SuR) 

g01 607 100% 100% g01 334 100% 100% 0 1.8175 

g02 7208 100% 100% g02 2036 100% 100% 0 3.5403 

g03 - 100% - g03 - 100% - - - 

g04 412 100% 100% g04 295 100% 100% 0 1.3966 

g05 3377 100% 100% g05 442 100% 100% 0 7.6403 

g06 223 100% 100% g06 179 100% 100% 0 1.2458 

g07 6473 100% 100% g07 3409 100% 100% 0 1.8988 

g08 30 100% 100% g08 24 100% 100% 0 1.2500 

g09 1076 100% 100% g09 769 100% 100% 0 1.3992 

g10 7514 100% 100% g10 4303 100% 100% 0 1.7462 

g11 529 100% 100% g11 141 100% 100% 0 3.7518 

g12 67 100% 100% g12 63 100% 100% 0 1.0635 

g13 - 100% - g13 5737 100% 44% +44% INF 

g14 5828 100% 100% g14 3114 100% 100% 0 1.8715 

g15 1337 100% 100% g15 191 100% 100% 0 7.0000 

g16 283 100% 100% g16 217 100% 100% 0 1.3041 

g17 4821 100% 20% g17 2574 100% 82% +62% 1.8730 

g18 5956 100% 100% g18 2594 100% 100% 0 2.2961 

g19 5415 100% 100% g19 5318 100% 100% 0 1.0182 

g20 - - - g20 - - - 0 - 

g21 1688 100% 76% g21 1355 100% 64% -12% 1.2458 

g22 - - - g22 - - - 0 - 

g23 - - - g23 8967 100% 92% +92% INF 

g24 83 100% 100% g24 70 100% 100% 0 1.1857 

Ave         2.3443 

 

      TABLE 2 

COMPARISON OF DE AND SRDE WITH BEST/1/BIN STRATEGY 

               DE(best/1/bin)                                   SRDE(best/1/bin) 

diff
SuR  

ratioNSC  

Prob. 
Median of 

NSC(x100) 

Feasible 

Rate(FR) 

Success 

Rate(SuR) 
Prob. 

Median of  

NSC(x100) 

Feasible 

Rate(FR) 

Success 

Rate(SuR) 

g01 190 100% 70% g01 199 100% 72% +2%         0.9548 

g02 - 100% - g02 - 100% - - - 

g03 - 100% - g03 - 100% - - - 

g04 213 100% 100% g04 211 100% 100% 0 1.0095 

g05 1362 100% 100% g05 194 100% 100% 0 7.0206 

g06 132 100% 100% g06 124 100% 100% 0 1.0645 

g07 1436 100% 100% g07 1452 100% 100% 0 0.9890 

g08 16 100% 100% g08 17 100% 100% 0 0.9412 

g09 369 100% 100% g09 372 100% 100% 0 0.9919 

g10 1976 100% 100% g10 1988 100% 100% 0 0.9940 

g11 121 100% 100% g11 33 100% 100% 0 3.6667 

g12 29 100% 100% g12 27 100% 100% 0 1.0741 

g13 3023 100% 40% g13 202 100% 72% +32%         14. 96 

g14 1353 100% 100% g14 1048 100% 100% 0 1.2910 

g15 557 100% 100% g15 85 100% 100% 0 6.5529 

g16 134 100% 100% g16 133 100% 100% 0 1.0075 

g17 1897 100% 40% g17 1222 100% 72% +32% 1.5524 

g18 845 100% 80% g18 864 100% 76% - 4% 0.9780 

g19 2000 100% 100% g19 1944 100% 100% 0 1.0288 

g20 - - - g20 - - - - - 

g21 780 100% 30% g21 796 100% 52% +22% 0.9799 

g22 - - - g22 - - - - - 

g23 4538 100% 90% g23 3041 100% 88% - 2% 1.4923 

g24 54 100% 100% g24 53 100% 100% 0 1.0189 

Ave         1.8215 
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Fig. 9. Convergence graphs of DE and SRDE with    rand/1 

mutation strategy in problems 1, 2, 15, 18 

. 

Fig. 10. Convergence graphs of DE and SRDE with    best/1 

mutation strategy in problems 5, 11, 13, 15 

. 
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